Best Paper Award for Qur’an QA shared task 2022

ELRA logo

RGCL is delighted to share that a team of our academics and PhD student have recently been awarded the Best Paper Award for Qur’an QA shared task 2022. This is at the 5th Workshop on Open-Source Arabic Corpora and Processing Tools (OSACT5) at the 13th Language Resources and Evaluation Conference (LREC 2022). This is the first best paper award for the recently established RIGHT Lab.

The organisers evaluated the papers based on different metrics:

  1. Novelty of methods
  2. Clear and good presentation of work
  3. Released resources ( code etc )
photo of academic sat at a table in front of a screen with the presentation displayed

Authors: Damith Premasiri , Tharindu Ranasinghe , Wajdi Zaghouani , Ruslan Mitkov

Title: DTW at Qur’an QA 2022: Utilising Transfer Learning with Transformers for Question Answering in a Low-resource Domain


The task of machine reading comprehension (MRC) is a useful benchmark to evaluate the natural language understanding of machines. It has gained popularity in the natural language processing (NLP) field mainly due to the large number of datasets released for many languages. However, the research in MRC has been understudied in several domains, including religious texts. The goal of the Qur’an QA 2022 shared task is to fill this gap by producing state-of-the-art question answering and reading comprehension research on Qur’an. This paper describes the DTW entry to the Quran QA 2022 shared task. Our methodology uses transfer learning to take advantage of available Arabic MRC data. We further improve the results using various ensemble learning strategies. Our approach provided a partial Reciprocal Rank (pRR) score of 0.49 on the test set, proving its strong performance on the task.