THE IMPACT OF ZERO PRONOMINAL
ANAPHORA ON TRANSLATIONAL LANGUAGE:
A STUDY ON ROMANIAN NEWSPAPERS

IUSTINA ILISEI(1), CLAUDIU MIHĂILĂ(2), DIANA INKPEN(3),
AND RUSLAN MITKOV(4)

Abstract. This study investigates the impact of zero pronominal anaphora for Romanian on a learning model able to distinguish between translated and non-translated texts. Even though the correct understanding of ellipsis from the source language and its mapping into the target language is essential in the translation process, zero pronominal anaphora has been scarcely investigated in the context of translation studies domain. This paper reports the results of a supervised learning system which exploits the anaphoric zero pronoun feature and its informativeness in the learning process. Moreover, ellipsis is one of the attributes proposed for the investigation of explicitation universal, and hence this study also brings an argument towards the existence of this hypothesis.

1. Introduction

Interest in studying translational language started a long time ago and certain theories and hypotheses have been proposed. It has been claimed that translated texts will always have certain particular features compared to non-translated ones, leaving them specific unnatural ‘fingerprints’. This effect was named ‘translationese’ [1]. Furthermore, a set of various hypotheses were brought forward [2, 3], and some of them claimed to be universals of translations [4, 5]. The translation universals theory continues to be a highly debated issue within the translation studies domain. Some scholars disagree with these hypotheses or even argue the universality aspect of this theory.
The reasons to investigate these hypotheses are multiple: first, to bring to light various tendencies of translational language [9], and hence, to pave the way for more accurate and natural translations [10]. Second, the automatic identification of these unconscious tendencies can improve automatic web-based parallel corpus extractors by enhancing their ability to correctly identify the candidate parallel text [11]. Also, according to recent studies ([12, 13]), the automatic detection of translationese can improve statistical machine translation frameworks.

The objective of the current study is to investigate to what extent zero pronominal anaphora appears in translational language. In the following paragraphs the main concepts and assumptions of this study are described.

1.1. Explicitation. One of these hypotheses is explicitation, first defined twenty-five years ago by Blum-Kulka [14]. She emphasised the concept that “explicitation is a universal strategy inherent in the process of language mediation” [14] (p.21). In [15, 16] it is suggested that changes in function words, such as addition, deletion or replacement, can lead to a shift in the degree of explicitness through which cohesion is attained (p.81). As [17] points out that cohesion change is one of the syntactic strategies which “affects intra-textual reference, ellipsis, substitution, pronominalisation and repetition, or the use of connectors of various kinds” (p.98), then ellipsis can therefore be considered as one of the attributes through which the explicitation universal can be investigated. This universal states that professional translators prefer to “spell things out rather than leave them implicit” [5]. Also, various studies note an increased level of repetitions due to translators’ tendency to be more precise and to disambiguate the message conveyed [9, 18]. Consequently, it can be concluded that ellipsis is expected to be avoided in translated language more than in non-translated language, and hence, it has the potential to be an important feature in the task of classifying between translated and non-translated texts. In this research study, the only type of ellipsis under investigation is the anaphoric zero pronoun explored in the Romanian language.

It is known that the typology of explicitation hypothesis can be divided into two categories: obligatory (ex.1) and voluntary (ex.2). There are classical examples in Portuguese used to clarify explicitation quoted from [19]. Obligatory explicitation appears when the target language forces translators to add information not present in the source text due to language restrictions, whilst voluntary manifests only if translators intentionally avoid any possible misinterpretations in their produced texts.
(1) Source: Frances liked her doctor.
Translation: Frances gostava dessa médica.
Back translation: Frances liked this [female] doctor.

(2) Source: Você também gosta dela?
Translation: So you like her too?
Back translation: You like her too?

Just like in almost all Romance languages, the anaphoric zero pronoun is entirely optional in Romanian (with the exception, however, of cases of emphasis, contrast and the like). Therefore, their presence in translated text is entirely dependent on the translators’ decision. These experiments aim to analyse one potential characteristic of voluntary explicitation in Romanian. In the following subsection, an overview of the anaphoric zero pronoun for Romanian is presented.

1.2. Zero Pronominal Anaphora. Defining anaphora in the case of the Romanian language is a controversial topic, and complete agreement between the scholars has not yet emerged. As a consequence, there are different classifications of ellipsis [20]. This study exploits zero pronominal anaphora, and the definition adopted is as follows: an anaphoric zero pronoun appears when an anaphoric pronoun is omitted but nevertheless understood [21], in which case the zero pronoun corefers to one or more overt nouns or noun phrases in the text (entities which provide the information for the correct understanding of the ellipsis). In this study we focus on the ellipsis of subjects, as it is the most frequent case.

Note that in the Romanian language there are two types of elliptic subjects: zero subjects and implicit subjects. The difference between them consists in the fact that implicit subjects can be lexically retrieved (ex. 3, example quoted from [22]), while zero subjects cannot\(^1\) (ex. 4, example quoted from [22]).

(3) \(z_p\)[Noi] mergem la școală.
[We] are going to school.

(4) \(⊘\) Ninge.
[It] is snowing.

2. Research Methodology

2.1. RoTC Corpus. The corpus used for these experiments is a monolingual comparable corpus specifically designed for the investigation of translationese

\(^1\)In the following examples, a zero pronoun is marked with \(z_p\\), while a zero subject is marked with the \(⊘\) sign.
and other translation hypotheses. The resource used is the Romanian Transla-
tional Comparable Corpus (RoTC corpus) that comprises several newspapers
articles, translated and non-translated, written between 2005-2009. It has a
subcorpus of 223 translated articles collected from the Southeast European
Times website, and the comparable non-translated corpus which has 416 ar-
ticles from the same time-span and in the same domain, documents collected
from a well-known Romanian newspapers website, called ‘Ziua’. The RoTC
corpus has a total of 341320 tokens, with 200211 for the translated subcorpus
and 141109 tokens for the non-translated one. To avoid any type of source
language interference or specific authorship style, the translated subcorpus
comprises texts written by various authors and translated from various source
languages.

This comparable corpus has been previously exploited in a similar exper-
iment for the identification of translationese, except the ellipsis feature was
not part of data representation and neither the scope of the study. To
the best of our knowledge, this is the first study which investigates the pres-
ence and impact of zero pronominal anaphora in translated texts compared to
non-translated texts.

2.2. Data Representation. The approach undertaken is a supervised learn-
ing model which aims at learning to differentiate between translated and
non-translated texts. Data representation considers the following language-
independent features (suggested by various scholars in the field to stand in
favour of simplification universal): information load, lexical richness,
sentence length, word length, and simple sentences.

In addition to this data representation, the learning model is enhanced
with one more feature: the average number of anaphoric zero pronouns in
the document. This attribute is automatically retrieved using the machine
learning approach proposed by [25, 22], and it is computed as the number of
verbs which have a zero pronoun in the subject position divided by the total
number of verbs in the document. The learning model proposed achieves an
accuracy of 74% using training and testing datasets from four domains: legal,
encyclopaedic, literary, and news articles [22]. As the domain in the current
experiments is also news texts, the learning model was used to identify the
verbs which have a zero pronoun in the subject position. The assumption
of this study is the following: if the addition of the anaphoric zero pronoun
attribute improves the accuracy of the learning model, then this consequence
may be considered as an argument in favour of the explicitation hypothesis.

2http://www.setimes.com
3http://www.ziuaveche.ro
The collected dataset was randomly divided into a training set of 639 texts and a test set of 148 texts. The same ratio of translated and non-translated class instances in the training and test set was maintained (49 translated class, 99 non-translated class). All attributes needed in the learning process were extracted using the part of speech tagger provided as a web service by the Research Institute for Artificial Intelligence\(^4\), the Romanian Academy [26, 27]. The learning classifiers used for the experiments are: SVM, Naïve Bayes, JRip, and Decision Trees. These algorithms proved to be accurate in similar experiments on the identification task of translationese [28, 23].

An additional experiment constitutes the training of the learning model using only the anaphoric zero pronoun feature. The objective is to investigate to what extent the model is able to perform the same task relying only on this attribute. Because this study focuses only on anaphoric zero pronouns, the current data representation is not exploiting any other explicitation features, such as conjunctions, adverbs or sentence length [29, 24].

3. Evaluation

The baseline used is the ZeroR algorithm, which considers the majority class of the learning model. In our case, the baseline is 65.10% for the cross-validation and 66.89% for the randomly generated test dataset. By using the Weka tool\(^5\) [30, 31], classifiers are trained by including and excluding the zero pronoun attribute from the learning model. In table 1, the results show that Naïve Bayes and SVM classifiers performed best: the addition of the azp feature to the learning model improves the accuracy of Naïve Bayes algorithm from 88.58% to 89.67% for the 10-fold cross-validation evaluation, and from 85.81% to 89.19% for the test dataset. The SVM classifier is improved from 87.64% to 88.11% for the 10-fold cross-validation, and from 87.84% to 89.19% for the test dataset.

Even though the Naïve Bayes and SVM classifiers are improved by the addition of the azp feature, the other two classifiers achieve interesting results. The decision trees classifier obtains an outstanding accuracy of 95.27% on the test dataset, and surprisingly, the addition of the azp attribute decreases the accuracy of the classifier by 1.35% from 96.62% to 95.27%. The slight decreased accuracy is maintained also for the 10-fold cross-validation evaluation being hardly noticeable with a difference of only 0.63%. JRip is another classifier that achieves a slightly lower success rate when the learning model considers the azp attribute. It presents similar behaviour to the decision trees classifier, but only for the 10-fold cross-validation decreasing

\(^4\)http://www.racai.ro/webservices/
\(^5\)http://www.cs.waikato.ac.nz/ml/weka
Table 1. Classification Results

<table>
<thead>
<tr>
<th>Classifier</th>
<th>Including AZP</th>
<th>Excluding AZP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10-fold</td>
<td>Test</td>
</tr>
<tr>
<td>Baseline</td>
<td>65.10%</td>
<td>66.89%</td>
</tr>
<tr>
<td>Naïve Bayes</td>
<td>89.67%</td>
<td>89.19%</td>
</tr>
<tr>
<td>SVM</td>
<td>88.11%</td>
<td>89.19%</td>
</tr>
<tr>
<td>JRip</td>
<td>86.85%</td>
<td>94.59%</td>
</tr>
<tr>
<td>J48</td>
<td>88.26%</td>
<td>95.27%</td>
</tr>
</tbody>
</table>

from 88.42% to 86.85% accuracy. On the test dataset the addition of the AZP feature improves the learning model, from 93.24% to 94.59% success rate. A possible justification for such results on some of the classifiers is the fact that the other five features from the data representation are known to be among the most indicative attributes for the categorisation task between translated and non-translated texts [23]. Hence, the AZP feature appears to improve the learning model only for specific algorithms, such as SVM and Naïve Bayes.

Furthermore, in order to present the rules considered by the classifiers, the pruned tree output from the JRip algorithm is outlined in figure 1. This classifier is one of the algorithms which provide an intuitive output for a more detailed data analysis. To identify the translated text class, the algorithm uses the first four rules, and it frequently uses the first one considering the lexical richness and simple sentences features. The second most used rule relies on the AZP attribute among other three features: information load, lexical richness, and simple sentences. To note that neither sentence length nor word length appear to influence the JRip classifier.

To analyse the impact that the AZP feature has among the other features of the learning model, the chi-squared filter has been employed. In the table 2, all the attributes are ranked and the third most influential one is the AZP feature, having a score of 132.706. To obtain a deeper analysis of this attribute and to realise to what extent the AZP feature is able to distinguish the classes by itself, an additional experiment was performed and the results are outlined in the following subsection.

3.1. Anaphoric Zero Pronoun Feature. The experiment employs a single feature in the data representation of the system, the AZP feature, to verify if this feature is in fact relevant for the classification. The results of this experiment are presented in table 3. Among all the learning algorithms, the JRip classifier is the one which performs best: it achieves an accuracy of 72.46% on cross-validation, and 77.03% on the test dataset. The results hardly
Rule 1: \((\text{LexicalRichness} \leq 0.50) \text{ and } (\text{SimpleSentences} \geq 0.80)\)
\[\Rightarrow \text{class=translated} \quad(128.0/9.0)\]

Rule 2: \((\text{InformationLoad} \leq 0.001) \text{ and } (\text{VbHasZPavg} \leq 0.38) \text{ and } (\text{InformationLoad} \geq 0.0007) \text{ and } (\text{LexicalRichness} \leq 0.49) \text{ and } (\text{SimpleSentences} \geq 0.65)\)
\[\Rightarrow \text{class=translated} \quad(42.0/2.0)\]

Rule 3: \((\text{LexicalRichness} \leq 0.51) \text{ and } (\text{SimpleSentences} \geq 0.79) \text{ and } (\text{LexicalRichness} \leq 0.50)\)
\[\Rightarrow \text{class=translated} \quad(15.0/0.0)\]

Rule 4: \((\text{InformationLoad} \leq 0.001) \text{ and } (\text{LexicalRichness} \leq 0.46) \text{ and } (\text{InformationLoad} \geq 0.0006) \text{ and } (\text{SimpleSentences} \geq 0.53) \text{ and } (\text{LexicalRichness} \leq 0.45)\)
\[\Rightarrow \text{class=translated} \quad(18.0/2.0)\]

Rule 5: \[\Rightarrow \text{class=non-translated} \quad(436.0/33.0)\]

Figure 1. JRip classifier rules output.

<table>
<thead>
<tr>
<th>Chi squared Ranking Filter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>InformationLoad</td>
<td>321.455</td>
</tr>
<tr>
<td>LexicalRichness</td>
<td>287.431</td>
</tr>
<tr>
<td>VbHasZPavg</td>
<td>132.706</td>
</tr>
<tr>
<td>SimpleSentences</td>
<td>130.871</td>
</tr>
<tr>
<td>SentenceLength</td>
<td>34.758</td>
</tr>
<tr>
<td>WordLength</td>
<td>28.049</td>
</tr>
</tbody>
</table>

Table 2. Attributes Filter Ranking.

vary between 71.05\% (SVM) and 72.46\% (JRip) for the 10-fold cross-validation evaluation. On the test dataset, the accuracy can reach up to 75\% value for the decision tree classifier. The accuracies obtained for the learning system are outstanding, the model being able to effectively perform the same task relying only on this attribute, the anaphoric zero pronoun.

In order to compare the previous output provided by the JRip with the current learning model, the rules obtained for this experiment are presented in figure 2. It appears that the algorithm assigns the class as translated if the value of the \(AzP\) feature is lower than 0.27 or between 0.36 and 0.37. In the previous experiment, the value considered was 0.38, clearly close to the one achieved in the current experiment.
Table 3. Classification accuracy results using only AZP Feature.

<table>
<thead>
<tr>
<th>Classifier</th>
<th>10-fold (cross-validation set)</th>
<th>Test set</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>65.10%</td>
<td>66.89%</td>
</tr>
<tr>
<td>Naïve Bayes</td>
<td>71.99%</td>
<td>72.30%</td>
</tr>
<tr>
<td>SVM</td>
<td>71.05%</td>
<td>70.27%</td>
</tr>
<tr>
<td>JRip</td>
<td>72.46%</td>
<td>77.03%</td>
</tr>
<tr>
<td>J48</td>
<td>72.14%</td>
<td>75.00%</td>
</tr>
</tbody>
</table>

Rule 1: \((VbHasZPavg \leq 0.278351) \Rightarrow \text{class=translated}\)
Rule 2: \((VbHasZPavg \leq 0.372881) \text{ and } (VbHasZPavg \geq 0.366337) \Rightarrow \text{class=translated}\)
Rule 3: \(\Rightarrow \text{class=non-translated}\)

Figure 2. JRip classifier rules output.

4. Conclusions and Further Research

This study reports a learning model which aims at identifying to what extent anaphoric zero pronouns occur in translational language. The resource used is a Romanian comparable corpus of translated and non-translated newspaper articles. By studying zero pronominal anaphora, a type of ellipsis, the current experiments may shed light on the validation of explicitation hypothesis.

A learning model is employed for Romanian language to distinguish between translated and non-translated texts. The data representation used is enhanced with the anaphoric zero pronoun feature. The results show that the addition of this attribute can increase the success rate of the learning model by up to 3.38% for various classifiers such as Naïve Bayes and SVM. Moreover, an additional study exploiting only the anaphoric zero pronoun feature has been further performed and the results show that the learning system is in fact able to accomplish the same task on its own. The accuracy achieved in this case varies between 71% to 75% and it may be considered an argument for the existence of the explicitation universal. Further research for the analysis of the anaphoric zero pronouns in translational language can also consider various features from the resolution stage of zero pronouns.
References

Research Institute in Information and Language Processing, University of Wolverhampton, United Kingdom
E-mail address: iustina.ilisei@wlv.ac.uk

National Centre for Text Mining, School of Computer Science, University of Manchester, United Kingdom
E-mail address: claudiu.mihaila@cs.man.ac.uk

School of Information Technology and Engineering, University of Ottawa, 800, King Edward Street, Ottawa, Canada
E-mail address: diana@site.uOttawa.ca

Research Institute in Information and Language Processing, University of Wolverhampton, United Kingdom
E-mail address: r.mitkov@wlv.ac.uk