Iustin Dornescu’s PhD thesis: Encyclopaedic Question Answering

Iustin Dornescu (2012) Encyclopaedic Question Answering. PhD Thesis, University of Wolverhampton, UK


Open-domain question answering (QA) is an established NLP task which enables users to search for specific pieces of information in large collections of texts. Instead of using keyword-based queries and a standard information retrieval engine, QA systems allow the use of natural language questions and return the exact answer (or a list of plausible answers) with supporting snippets of text. In the past decade, open-domain QA research has been dominated by evaluation fora such as TREC and CLEF, where shallow techniques relying on information redundancy have achieved very good performance. However, this performance is generally limited to simple factoid and definition questions because the answer is usually explicitly present in the document collection. Current approaches are much less successful in finding implicit answers and are difficult to adapt to more complex question types which are likely to be posed by users.

In order to advance the field of QA, this thesis proposes a shift in focus from simple factoid questions to encyclopaedic questions: list questions composed of several constraints. These questions have more than one correct answer which usually cannot be extracted from one small snippet of text. To correctly interpret the question, systems need to combine classic knowledge-based approaches with advanced NLP techniques. To find and extract answers, systems need to aggregate atomic facts from heterogeneous sources as opposed to simply relying on keyword-based similarity. Encyclopaedic questions promote QA systems which use basic reasoning, making them more robust and easier to extend with new types of constraints and new types of questions. A novel semantic architecture is proposed which represents a paradigm shift in open-domain QA system design, using semantic concepts and knowledge representation instead of words and information retrieval. The architecture consists of two phases, analysis – responsible for interpreting questions and finding answers, and feedback – responsible for interacting with the user.

This architecture provides the basis for EQUAL, a semantic QA system developed as part of the thesis, which uses Wikipedia as a source of world knowledge and employs simple forms of open-domain inference to answer encyclopaedic questions. EQUAL combines the output of a syntactic parser with semantic information from Wikipedia to analyse questions. To address natural language ambiguity, the system builds several formal interpretations containing the constraints specified by the user and addresses each interpretation in parallel. To find answers, the system then tests these constraints individually for each candidate answer, considering information from different documents and/or sources. The correctness of an answer is not proved using a logical formalism, instead a confidence-based measure is employed. This measure reflects the validation of constraints from raw natural language, automatically extracted entities, relations and available structured and semi-structured knowledge from Wikipedia and the Semantic Web. When searching for and validating answers, EQUAL uses the Wikipedia link graph to find relevant information. This method achieves good precision and allows only pages of a suitable type to be considered, but is affected by the incompleteness of the existing markup targeted towards human readers. In order to address this, a semantic analysis module which disambiguates entities is developed to enrich Wikipedia articles with additional links to other pages. The module increases recall, enabling the system to rely more on the link structure of Wikipedia than on word-based similarity between pages. It also allows authoritative information from different sources to be linked to the encyclopaedia, further enhancing the coverage of the system.

The viability of the proposed approach was evaluated in an independent setting by participating in two competitions at CLEF 2008 and 2009. In both competitions, EQUAL outperformed standard textual QA systems as well as semi-automatic approaches. Having established a feasible way forward for the design of open-domain QA systems, future work will attempt to further improve performance to take advantage of recent advances in information extraction and knowledge representation, as well as by experimenting with formal reasoning and inference capabilities.


   author =   {Iustin Dornescu},
   title =    {Encyclopaedic Question Answering},
   year =     {2012},
   address =  {Wolverhampton, UK},
   month =    {October},
   URL =      {http://clg.wlv.ac.uk/papers/dornescu-thesis.pdf}